For Immediate Release

TOXIC ELEMENTS RESEARCH FOUNDATION DISCOVERS HIDDEN DANGERS WITHIN DENTAL IMPLANTS

EXECUTIVE SUMMARY

No one wants to lose a tooth, but if it comes to that, can patient’s teeth be restored to acceptable esthetics and function? Yes, either through Bridges or the now popular practice of dental implants. Ceramics, surgical stainless steel and titanium implants are being placed in jaw bone to hold crowns in place. But is this practice safe for the patient?

As quoted from a former University of Colorado professor, “anything implanted in bone will create an autoimmune response. The only difference is the time it takes.”

The Toxic Element Research Foundation has funded a study wherein implants that appeared by X-ray to be healthy were voluntarily removed, and DNA technology was used to identify bacteria in the tissue and blood adjacent to the implant.

More than a dozen different anaerobic bacteria were detected in both bone grafts and metallic implants. Serious diseases potentially associated with exposure to the toxins produced by these anaerobic bacteria were identified. Blood tests also showed statistically significant shifts related to implants and other immune challengers AFTER being removed.

TERF, a non-profit research foundation, is dedicated to stimulating interest in the research community as well as informing the public to become aware of potential problems associated with dental materials and procedures. Informed
consent of potential problems makes for better informed decisions by the patient – especially where health is at risk.
DENTAL IMPLANTS – BONE GRAFT AND METALLIC

All the new rage, metallic implants are the new bail out for dentistry. When proper care and nutritional practices are not applied, teeth are lost. The infected bone around the problem tooth rejects the sick, dead or dying tooth, and either the tooth falls out, or a dentist will perform a root canal, or remove the tooth to stop the pain.

Now, what to do with the space left behind if the tooth is removed? Bridges, permanent or removable, have filled the bill in the past, but since the 1960’s, the use of metallic implants have grown exponentially as the more popular choice to repair the problem. Is this a good thing or a bad thing – or somewhere in between?

Dr. Douglas Swartzendruber, a professor at the University of Colorado and later Dean, was asked: “How safe are dental implants?” He had supervised the development of a blood test that determined whether dental materials were safe or not according to immune reactivity in the blood. The question was specifically regarding metals that showed non-reactivity to the immune system, presuming that as implants they would be acceptable. His answer was surprising.
“Anything implanted into bone will create an autoimmune response. The only difference is the length of time it takes,” he replied.

“Are you talking about autoimmune diseases?” he was asked.

“That’s what an autoimmune response is,” he replied.

“But don’t the serum immunology compatibility tests show them to be safe?”

“To use them in the mouth as crowns or bridges is okay – they are outside the body, so to speak, but the moment you implant anything into bone, you create a ‘non-self’ reaction in which the immune system says, ‘you are not registered as bone, therefore are a foreign body, and must be removed.’”

This suggested that dental implants were to be added to the consortium of dental materials and bacterial toxins that potentially generate ill health. In monitoring chemistry changes of those people having their implants removed (along with other immune offenders), TERF found, from the standpoint of chemistries, there were two common findings. Red cell readings stayed on the low side - or dropped.

Examples:

For 4-6 months – The Stability Point is 46.0 % & the Break Even point is 42%

<table>
<thead>
<tr>
<th>Hematocrit (HCT)</th>
<th>40.6</th>
<th>39.2</th>
<th>40.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40.0</td>
<td>39.3</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>45.4</td>
<td>43.6</td>
<td>40.4</td>
</tr>
<tr>
<td></td>
<td>41.9</td>
<td>43.2</td>
<td>42.8</td>
</tr>
</tbody>
</table>
This lack of recovery led to the suspicion that anaerobic bacteria might be living adjacent to the implants. Other offenders, like mercury, nickel and aluminum create changes in chemistry, but so can these particular bacteria.

With DNA sampling available, TERF looked at the bone and unusual looking tissue around implants. Many implants were hard to remove. Why? Because the body had formed a shield around them to limit the amount of toxins being thrust upon its blood stream. This hard bone was thought to be representing implant success. A sort of symbiotic blending of artificial with natural bone. Possibly an extension of the concept of placing cadaver bone into bony defects in the jaw.

So, utilizing DNA identification, both implanted bone and implanted metals were looked at for the presence or absence of anaerobic bacteria. Anaerobic bacteria, as contrasted with aerobic, like that appearing at the site of a cut exposed to air, was what the Foundation was looking for. Anaerobes live in the absence of oxygen, and are far more vicious. Some are common to most people’s vocabulary. Botulism and tetanus are two of the best known. They can be lethal.

Below are the results of DNA testing utilizing checkerboard analytical techniques to determine the presence of some basic anaerobes. There are probably more, because these tests were limited to 85 of the most common anaerobes. Just the activity of one microbe, like Streptococcus pneumonia, or Clostridium
botulinum (botulism), or Corynebacterium diphtheria, can be adequate to reduce a recipient’s quality of life.

We have includes the disease conditions that are commonly associated with the presence of certain bacteria found in metallic implants and bone grafts.

- **Cemella morbillorum** – meningitis – acute invasive infections of the inner lining of blood vessels.

- **Porphyromonas gingivalis** – alters integrity of the endothelial lining of vessels. Enhances athrogenesis.

- **Prevotella intermedia** – contributes to heart disease – penetrates cells therefore hiding from immune system and antibodies.

- **Staphlococcus anginosus** – induces platelet clumping in heart valves causing infective endocavalitis.

- **Veillonella parvula** – pathogen related to infection in sinuses heart bone and central nervous system.

- **Strep constellatus** – reported with myocardial abscess, narrowing of the ventricular system and severe brain swelling.
• **Prevotells melaninogenica** – can cause infections like abscesses and bacteremia at wound sites (post surgical), genital tract and periodontal disease.

These bacteria are primarily located in the tissue and blood immediately surrounding the implants, or within the bone proper of the implanted “sterile” cadaver bone. Implanted bone was not found to dissolve and turn into normal bone, as suggested, but sometimes was the consistency of a piece of coral, but mostly it was just mushy goo laden with anaerobic bacteria. There was no attachment to surrounding bone.

The other relatively consistent result regarded porphyrins. Porphyrins are an important marker of (-) because (-). Normally when dental toxins are removed, the interference is removed, therefore heme and ATP production go up and urinary porphyrins go down in a few days. In the case of implants, when they are removed, porphyrin excretion goes up. Why? It is suggested that the bone surrounding the implant has been a reservoir for incubating toxic bacteria and now a vascular system can enter, along with white blood cells and eliminate the reservoir by flushing out the contents. In support of this concept, porphyrins immediately increase, and then over a period of 1 to 3 months, they drop. This concept is open to discussion; however, the presence of toxic poisons is not. 20 or more anaerobes were found in each sample.

A 6 day sampling of porphyrins is as follows:

- 83.2 -> 105 mcg
- 72.5 -> 85.4 mcg
70.7 -> 132.8 mcg
14.2 -> 110.6 mcg

The amount of change appears to be somewhat related to the number of implants removed. These range up to 6 implants removed.

CONCLUSION

This is the first study of its kind to detect if a patient is exposed to potentially deadly anaerobic bacteria as a direct result of the placement of dental implants.

DNA testing has shown conclusively that these anaerobic bacteria are present at the site of implant in surrounding tissue. Further, these anaerobic bacteria have been attributed to a myriad of diseases. From these observations the Toxic Element Research Foundation concludes that dental implants are dangerous to patients, and that their use should be halted immediately until adequate long term studies have been performed to show that they are indeed safe.

These observations further suggest that the dental profession should work in conjunction with the toxicology and biochemistry professions in re-evaluating the use of metallic implants and dead bone. In the absence of their use being discontinued, TERF believes at the minimum simple blood tests (the Complete Blood Count or CBC) before and a week after implanting artificial or dead bone or metals in a patient can indicate how the body is accepting the implanted material.

Contacts:
Toxic Elements Research Foundation –
American Dental Association -
Further Research -